Reduction in Tooth Stiffness as a Result of Endodontic and Restorative Procedures

Author: Reeh et al **Year:** 1989 **Journal:** JOE

Aim
- To examine nondestructively, the effect of endodontic and restorative procedures on the loss of tooth strength using closed loop servo-hydraulics in conjunction with strain gauge technology.

Materials & Methods
- 42 extracted, noncarious MAX. 2nd premolars were used in this study.
- Teeth stiffness was measured under load control, in a closed loop servo-hydraulic system.
- A stress-strain curve was generated from each gauge prior to alteration of the tooth and after each procedure performed on the tooth.
- Cuspal stiffness, as a measure of tooth strength, was evaluated on one of 2 series:

 Series 1
 a- Unaltered tooth
 b- Access preparation
 c- Instrumentation
 d- Obturation
 e- MOD cavity preparation

 Series 2
 a- Unaltered tooth
 b- Occlusal cavity preparation
 c- 2 surface cavity preparation
 d- MOD cavity preparation
 e- Access
 f- Instrumentation
 g- Obturation

Results
- Access opening reduces the relative stiffness by 5%.
- Instrumentation & obturation causes no significant difference in tooth stiffness.
- Occlusal cavity preparation reduces the relative stiffness by 20%.
- Loss of marginal ridge integrity reduces the relative stiffness by 46%.
- MOD cavity preparation resulted in an average of a 63% loss in relative cuspal stiffness.

Conclusion
- The Endodontic procedures (access + mechanical + obturation) reduced tooth stiffness by only 5%, which is contributed entirely by the access opening.
- Endodontic procedures do not weaken teeth with intact marginal ridges.
- Restorative procedures were the greatest contributor to loss of tooth stiffness.
- The loss of marginal ridge integrity was the greatest contribution to loss of tooth strength.

Authors
Ernest Reeh, Harold Messer & William Douglas